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FOREWORD 

This report  p resents  the resu l t s  of work performed by the 

Thermal  Environment Section of Lockheed's Huntsville Research  

& Engineering Center. 

Northrop Nortronics (NSL P O  5-09287) for  Marshall  Space Flight 

Center (MSFC), Contract NAS8-20082. This t a sk  was conducted 

in response to  the requirement of Appendix B-1, Schedule Order  

No. 105. 

The work was done under subcontract t o  

The NASA Technical Coordinator for this  study was Homer 

Wilson of the Thermal Environment Branch of the Aero-Astrodynamics 

Lab or  a t  o r y. 
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SUMMARY 

. 

This Technical Memorandum presents  some resu l t s  of a study of 

coupled convective and radiative heat t r ans fe r  to  vehicles entering planetary 

a tmospheres  at superorbi ta l  velocities. The flow field about a blunt body in 

a hypersonic s t r e a m  is described by a coupled set  of conservation equations 

which a r e  solved numerically using a combination of integral  methods and 

successive approximation techniques. The effects of m a s s  injection, radia-  

tive emission and absorption, and coupling between convection and radiation 

a r e  included in the analysis.  The spec t ra l  absorption coefficients of the 

shock layer  gas a r e  formulated a s  functions of temperature ,  radiation f r e -  

quency and par t ic le  number density. 

convective and radiative heating rates and shock layer  profiles a r e  presented 

for s eve ra l  flight conditions in equilibrium a i r .  

lunar type t ra jec tory  a r e  a l so  presented. 

that  the coupling effect of radiation cooling can significantly reduce the total  

heat t r ans fe r  to  a superorbital  entry body. 

Results obtained for stagnation region 

Heating r a t e s  for a typical 

Results of this  analysis  indicate 
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Sect ion 

FOREWORD 

1 

2 

3 

4 

SUMMARY 

LIST O F  FIGURES 

NOMENCLATURE 

INTRODUCTION 

LMSC/HREC A791241 

C ON T EN TS 

COUPLED FLOW FIELD ANALYSIS 

2.1 Governing Equations 

2.2 Method of Solution 

GAS PROPERTIES 

3.1 Thermodynamic and Transpor t  P rope r t i e s  

3.2 Radiative P rope r t i e s  

RESULTS AND DISCUSSION 

4.1 

4.2 Heating Minimization 

4.3 Mass Injection Effects 

4.4 Ea r th  Entry at Lunar Return Velocities 

Emission and Spectral  Absorption Model Resul ts  

REFERENCES 

Page  

ii 

i i i  

V 

vi  i 

1 

3 

3 

7 

11 

11 

1 3  

20 

20 

33 

35 

39 

42 

L 

a 

iv 



~~ 

LMSC/HREC A791241 

LIST O F  FIGURES 

Figure 

1 

2 

Page 

4 Body-Oriented Coordinate System 

Comparison of Specie Number Density Versus 
Temperature  Calculated Using Two Methods for 
a P r e s s u r e  of .68 a t m  12 

3 Radiative Cross  Section of 0 Atoms a s  a Function 
of Frequency for Three Temperatures  15  

Radiative Cross  Section of N Atoms as  a Function 
of Frequency for  Three Temperatures  

Radiative Cross  Section of Nt and Ot a s  a Function 
of Frequency fo r  Three Temperatures  

4 
16 

5 
17 

6 Radiative Cross  Section of N2 and 0 2  Molecules a s  a 
Function of Frequency 18 

21 7 

8 

Shock Layer P r e s s u r e  and Temperature  Prof i les  

Radiative Flux Divergence, E, Prof i les  Obtained 
f r o m  the Spectral  and Emission Models 22 

9 Absorption Coefficient Versus Frequency for a Typical 
Wall Condition 2 4  

10 Absorption Coefficient Versus Frequency for  Typical 
Conditions Behind a Shock 25 

11 Optical Depth Versus Nondimensional Shock Layer 
Coordinate for  Five Typical Frequencies 26 

12 Monochromatic Energy Flux a t  the Wall Versus 
Frequency for  a Coupled and Uncoupled Solution 27 

13 A Comparison of Total Heating Rates Versus 
F r e e s t r e a m  Velocity for  Three F r e e s t r e a m  Densities 
( R  = 1 f t )  28 

14 Shock Layer Temperature and Specie Number Density 
Prof i les  for a Flight Condition Producing Strong 
Radiation C ouplin g 30 

V 



LMSC/HREC A7 9 1241 

Figure  

15 

16 

17 

18 

19 

20 

LIST O F  FIGURES (Continued) 

Page  

A Comparison of Total  Heating Rates  Versus 
F r e e s t r e a m  Velocity for Three  Freestream Densit ies 
(R  = 3 f t )  32 

Methods Comparison of Heating Rates  as  a Function 
of Body Radius 34 

Heating Rate  P a r a m e t e r  Versus Mass Injection 
P a r a m e t e r  for a Coupled Emission Solution 36 

Nondimensional Shock Layer  Velocity and Enthalpy 
Profi les  f o r  Mass h j ec t ion  Rates,  (PV),/(PU),, 
of 0.0, 0.01, 0.05 and 0.10 (Coupled Emiss ion  Solutions) 37 

Nondimensional Shock Layer  Velocity and Enthalpy 
Profiles for Coupled and Uncoupled Emission Solution 
with a Nondimensional Mass h j e c t i o n  Rate of 0.05 38 

Comparison of Heating Rates  Predic ted  by Three  
Methods for P ro jec t  Fire I1 Tra jec tory  41 

vi 



c 

4 

a i 

B 

C 

dq /dhv 

E 

r 

g 

H 

h 

Ni 

P 

Pr 

q r  

%eta, 
R 

Re 

r 

N OMENC LA T URE 

velocity profile coefficients 

Planckian radiation intensity 

velocity of light 

monochromatic energy flux 

radiant emission rate 

exponential integral 

velocity function, u/u6 

enthalpy function, H/H6 

total  enthalpy 

static enthalpy, also Planck constant 

integral  of f 2 

integral  of f 

local radiation intensity 

Bolt zmann constant 

number density of specie i 

static p re s su re  

Prandt l  number 

convective energy flux 

radiative energy flux 

total  surface heat flux 

radius of curvature 

Reynolds number,  p6,0 u m R / % , o  

defined in Figure 1 

~ ~~ 

LMSC/HREC A79 1241 

vii  



LMSC/HREC ~ 7 9 1 2 4 1  

T 

oc) 
U 

U 

V 

t emp e r a tu r e 

f r ees t r eam velocity 

velocity component para l le l  to  body 

velocity component normal  to  surface 

x, Y body - oriented coordinate s 

Greek 

Q V  

6 

6 
N 

rl 

e 
K 

cy 

K 

U 

absorption coefficient 

shock detachment distance 

transformed shock detachment distance 

difference between body and shock angle 

Dorodnitzyn variable 

body angle 

body curvature  

1 + Ky 

vis c o sity 

frequency 

nondimens i onal x-coordinate 

density 

density ra t io  a c r o s s  shock, p00/p6,-, 

effective c r o s s  section 

optical depth a t  frequency V 

shock angle 

h V/kT 

solid angle 

vorticity 

vi i i  

8 



. Sub scr ip ts  

W 

6 

00 

0 

LMSC/HREC A79 1241 

wall quantities 

quantities immediately behind the shock 

f r ee  st  r e a m  c qndit ion 

stagnation line 

Sux, e r  s c r i D t  

dimensional quantities 

P 

ix 



LMSC/HREC A791241 

Section 1 

INTRODUCTION 

4 

The thermal  environment of a vehicle entering a planetary atmosphere 

a t  superorbi ta l  velocit ies is investigated for  the case  where convective and 

radiative t ranspor t  mechanisms a r e  coupled. 

flow field s t ruc ture  and the surface heat t ransfer  a r e  vital  to the design of 

reliable and prac t ica l  hea t  protection systems.  

this r e p o r t  can be used for predicting coupled hea t  t ransfer  distributions about 

an a rb i t r a r i l y  shaped axisymmetric blunt body entering an a r b i t r a r y  planetary 

atmosphere a t  hypersonic velocities. 

Accurate determination of the 

The formulation presented in 

The regime of a tmospheric  f l igh t  is res t r ic ted  to  the laminar  continuum 

regime and to flight conditions where thermodynamic equilibrium can  be applied. 

The l a t e r  res t r ic t ion  can  be easi ly  removed by adding an equation for  conser -  

vation of chemical species. 

reduced to a f o r m  consistent with the flow around a blunted nose in a hyper- 

sonic s t r e a m  by assuming that the shock layer  is thin and that the viscous 

layer  thickness and shock stand-off distance a r e  of the same o r d e r  of magni- 

tude. 

emission and absorption, and coupling between convection and radiation. 

Effects of mass injection of ablation species on the heat t ransfer  process  

a r e  not present ly  included. 

The basic s teady Navier-Stokes equations a r e  

The p resen t  analysis includes the effects of m a s s  injection, radiative 

The p r i m a r y  purpose of this report  is to p re sen t  the resu l t s  of a n  in- 

vestigation of blunt body heating for  entry into e a r t h ' s  atmosphere and to 

p re sen t  a full  t rea tment  of the spectral  evaluation of the radiant  energy t rans-  
fer .  

formulated by the authors in a previous r e p o r t  (Reference 1). 

cussion of this coupled flow f i e ld  analysis is presented in Section 2. 

The complete governing equations and solution procedures  have been 

A brief d i s -  

The 
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techniques used here follow the approach Hoshizaki and co-workers (Ref- 

e rences  2 and 3 )  have taken in the solution of the viscous radiating blunt 

body problem. 

. 

The coupled shock layer solution procedure presented in Reference 1 

has  been programmed for  a digital computer (Reference 4) utilizing the thermo- 

dynamic and t ransport  propert ies  of a i r  a s  computed by Hansen (Reference 5). 
The methods used to evaluate the spec t ra l  absorption coefficients a r e  given in  

Section 3.  Numerical solutions were obtained fo r  a var ie ty  of flight conditions 

and Section 4 presents a discussion of these resul ts .  

. 

2 
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Section 2 

COUPLED FLOW FIELD ANALYSIS 

2.1 GOVERNING EQUATIONS 

The purpose of this analysis is to obtain a d i r ec t  solution to the viscous 

blunt-body problem fo r  the case  where convective and radiative t ranspor t  

mechanisms a r e  coupled. The equations used to descr ibe the coupled flow 

field a re  a coupled se t  obtained f rom the total conservation equations for 

a multi-component continuum gas (References 6 and 7). 

assumptions a r e  made in o rde r  to obtain a sys tem of parabolic par t ia l  d i f -  

fe ren t ia l  equations c o r r e c t  to  the o rde r  of the density ra t io  a c r c s s  the shock. 

The following basic 

0 the shock layer  is assumed to be thin, 6 ! / R t  << 1 

0 the thickness of the viscous layer,  and the shock detachment 
distance a r e  taken to  be of the same o rde r  of magnitude 

t e rms  which a r e  of O(p2)  and higher have been consistently 
ne gle c te d 

0 

The equations used in this analysis a r e  thus valid f o r  a thin shock layer  which 

is completely viscous and in thermodynamic equilibrium. 

The body oriented coordinate sys tem used in writing the coupled flow 

f ie ld  equations is shown in Figure 1. 

fe ren t ia l  equations c o r r e c t  to O ( P )  can be writ ten a s  follows 

The complete sys tem of governing d i f -  

X -Momentum 
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U' - 
00 

Figure  1 - Body-Oriented Coordinate System 
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4 



Y-Momentum . 

. 
Continuity 

c 

LMSC/HREC A791241 

E n e r g y  

The radiative term E' that appears  i n  the energy equation, Equation (4), 

represents  the volumetric ra te  of emiss ion  o r  absorption of energy by the 

shock layer  gas  due to radiation. 

in  order  to evaluate this radiation t ranspor t  t e r m  in a prac t ica l  manner.  

Two assumptions a r e  made i n  this analysis 

0 the shock layer geometry is approximated by a semi-infinite 
plane s lab 

0 the shock layer  is  assumed to be locally one-dimensional in 
that radiation t ransport  influence is allowed in only one d i -  
r e  c tion. 

It has  been shown previously (Reference 8 )  that this one-dimensional 

plane s lab model can be used to  obtain quantitatively valid resul ts .  

radiation flux divergence can be writ ten 

The 

5 
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-El = {av [i Iv dQ - 477 B, 
0 

where a 
is the Planckian radiation intensity and R i s  a surface solid angle. 

is the spectral  absorption coefficient, I V is  the local intensity, B, 
V 

A detailed mathematical  analysis of Equation (5 )  is presented in Ref- 

e rence  1 where the following express ion  for  the radiative flux divergence is 

derived. 

-E‘ = ~ “ ~ 7 7  aV,[/”. (rv - r v )  A A  drv 

0 

1 d v  

A A + P s  Bu El (rv - drv - 2 Bv 
T 
V 

In equation ( 6 ) ,  r is the optical depth a t  frequency v given by 
V 

r V = 1‘ a V dy‘ 

0 

(5) 

B is Planckian intensity which can be writ ten 
U 

4 

1 B =2h3 [ 1 
V 2 exp(hv/kT) - 1 

C 

and 6 is  the exponential integral .  
1 

6 
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. 

The sys tem of equations, Equations 1-8, defines the radiation-coupled 

flow field used in  this analysis of blunt body heating. 

section presents  a brief discussion of the method used to solve this system. 
The following sub- 

2.2 METHOD O F  SOLUTION 

The equations used in this analysis a r e  solved numerically,  using a 

combination of integral  methods and successive approximation techniques. 

Solutions to the momentum equation will be obtained in a numerical  man-  

n e r  using an integral  technique much like the Karman-Pohlhausen method 

for  boundary layer  analysis. 

approximations technique, utilizing finite -difference methods for  approxi- 

mation of s t reamwise derivatives.  

The energy equation is solved by a successive 

The momentum equation is f i r s t  integrated a c r o s s  the shock layer  to 

obtain an integro-differential equation i n  one independent variable.  

shock layer  gas  velocity profile is then assumed to be representable  by poly- 

nomials  with sufficient boundary conditions being specified to uniquely define 

this polynomial. 

(Reference 9) and by Hoshizaki and Wilson (Reference 3) and this analysis  

c losely follows their work. 

The 

This type of method has been used by Maslen and Moeckel 

The energy equation is solved by a finite-difference, successive 

approximations technique. Equation (4) is manipulated into a fo rm suitable 

f o r  a numer ica l  i teration procedure which is started by an initial guess for  

the shock layer enthalpy profile. This estimated profile is then used in de-  

termining the thermodynamic, t ransport  and radiative propert ies  of the gas 

mixture .  

to the initial guess,  and i terated until satisfactory convergence is obtained. 

Solutions to  the energy  equation can then be obtained, compared 

. 
The conservation equations as stated in Equations (1) through (4) a r e  

in the body oriented (x, y) coordinate sys tem (Figure 1). 

be solved in a dimensionless (t, q )  coordinate system, where 

They will actually 

7 
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(9)  

In this analysis all var iab les  a r e  non-dimensionalized according to the scheme 

presented in Reference 1. The dimensionless transformed equations have the 

following form. 

Mome ntum In te g r  o - Diffe re  n tia 1 E qua tion 

Transformed Ene r g y E qua ti on 

. 

. 
2 2 

2 N -2 U '  
a ( p f )  t K  6 R e p  E .  

co 2 -  

8 
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In o rde r  to approximate the velocity profile by a fifth-order polynomial 

5 

. 

L 

0 i = O  

the following boundary conditions a r e  chosen; 

0 u = 0 at y = . O  

O U = U  a t y = d  6 

2 
0 - -  a u - ~ a t y = 6  

aY2 
0 Momentum equation evaluated a t  body surface 

0 Total m a s s  balance 

0 a =  0 a t y = 6  6 

The shock boundary conditions a r e  the Rankine -Hugoniot relations which can 

b e  wri t ten 

- 
v = sin+ s ine - p cos$  c o s €  6 

u = sin$ cos6 t p cos$ sine 6 

2 = ( 1  - P )  cos q5 p6 

The two boundary conditions necessary to solve the energy equation a r e  

9 
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The objective of this  study is to  obtain coupled heating rate d is t r ibu-  

tions about a blunt body in a hypersonic flow field. 

a r e  used in the (t, q )  coordinate sys t em to  yield these surface heating rates .  

The following expressions 

Convective : 

Radiative: 

0 0 7  

47r h v 3  !$(t) dt d v .  9; = - J Ju96 c 2 [exp(hv/kT) - 13 
0 0  

Details of the numerical  solution procedure will not b e  presented  in this  

repor t ,  and the interested reader  is r e f e r r e d  to  Reference 1 for  m o r e  

information on the techniques. 

10 
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Section 3 

GAS PROPERTIES 

3.1, THERMODYNAMIC AND TRANSPORT PROPERTIES 

The formulated method outlined in the previous section is applicable to  

a r b i t r a r y  gases;  however, for this analysis  only the species  of air a r e  con- 

sidered. 

obtained f r o m  a closed form se t  of approximate parti t ion functions f o r  the 

ma jo r  components of a i r  (Reference 5). 

g rammed  (Reference 10) such that the total number densit ies,  enthalpy, v i s -  

cosity,  Prandt l  number and specie concentrations could be found for  a given 

tempera ture  and pressure .  Since the independent var iables  of this analysis  

a r e  enthalpy and p r e s s u r e  ra ther  than tempera ture  and p res su re ,  a n  itera- 

tion scheme (Reference 4) was used to  obtain equilibrium proper t ies  as a 

function of enthalpy and p res su re ,  

Equilibrium thermodynamic and t ranspor t  propert ies  of air  were  

The partition functions were  p ro -  

The equilibrium species  number densit ies a r e  important values used 

in the radiation calculation. Fo r  this reason,  number densit ies f rom the 

approximate parti t ion functions were compared (F igure  2)  with number 

densi t ies  f r o m  the F E W  computer program. The F E M P  program (Refer-  

ence 11) i s  a f r e e  energy minimization computer p rogram which calculates 

the equilibrium thermodynamic propert ies  of gases. The number densit ies 

which were  calculated using the two methods for a p r e s s u r e  of .68 a t m  and 

a tempera ture  range of 2000 t o  14000°K a g r e e  very  well. 
typical and lends validity to  the u s e  of the species  number densit ies as well 

as the overal l  thermodynamic properties obtained f rom the approximate par -  

This agreement  is  

> t i t ion functions of Reference 5. 

11 
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F E M P  (Reference 11)-  

10 l8  

2 I W  4 6 8 10 
- 3  Tempera ture  (OK) x 10 

12 14 

Figure 2 - Comparison of Specie Number Density Versus Tempera ture  
Calculated Using Two Methods f o r  a P r e s s u r e  of .68  atm 

12 
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3.2 RADIATIVE PROPERTIES 

. 

Two methods were  used to evaluate the radiative propert ies  of air. 

These proper t ies  determine the radiative heat t r ans fe r  within a shock layer. 

The amount of heat t r ans fe r  by radiation is dependent on the radiative f l u x  

divergence, E' ,  a t  each point in the shock layer.  The radiative f l u x  d iver -  

gence is a d i rec t  integral  function of the absorption coefficient of the gas 

species. Fur ther ,  the absorption coefficient is a complex function of the 

tempera ture ,  radiation frequency, types of species present  and specie num- 

be r  density. Because of the overall  complexity of evaluating radiative prop-  

e r t i e s ,  both a simple and a detailed method were  used. One method involves 

using curve  fi ts  of radiative emission in a i r ,  and the other method involves 

detailed evaluation of spectral  absorption coefficients. 

A simple model for the continuum radiation flux divergence in a i r ,  

based on the work of Y o s  (Reference 12), was used to  obtain coupled rad ia-  

tive and convective heating solutions. 

the continuum radiative flux divergence as  a function of tempera ture  and pres-  

sure.  

t ions l is ted below. 

Y o s  p resents  a family of curves  for  

This family of curves  is adequately represented by the curve fit equa- 

Tt = 1100 loglo P t 13800 

If T < Tt, then 

loglo E' = 0.0005T + 1.15 l o g l o p  - 3.15 

o r ,  i f  T 2 Tt, then 

E'  = 1.875 l o g l o p  t 3.903 loglo 

13 
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0 where T i s  the temperature  in K, P is the p r e s s u r e  in a tmospheres ,  and 
3 E’ is  the continuum radiative flux divergence in watts/cm . This model 

overest imates  the radiative flux because only emission (Le.,  no self-  

absorption) i s  considered. 

is that it permi ts  coupled solutions to  be obtained rapidly. 

The principal advantage of using this model 

Detailed calculations of the radiative f l u x  divergent t e r m  must  be 

ca r r i ed  out in most flight regimes and where significant amounts of abla-  

tion products a r e  introduced into the shock layer.  

Equation (6) ,  was evaluated using spec t ra l  absorption coefficients, 

f r o m  References 3 and 8. The spectral  absorption coefficients of individual 

species  a r e  defined in t e r m s  of radiation c r o s s  section, oV, by the equation 

The f l u x  divergent t e r m ,  

c y v ,  

3 where N is the specie number density in par t ic les /cm . 
tion c r o s s  section for  a i r  at a par t icular  frequency can be writ ten 

The total  absorp-  

n 

i = l  

where the t e r m  in front of the summation accounts for induced emission,  

X = hv/kT, and n i s  the number of species.  

the spec t ra l  absorption coefficient, the radiation c r o s s  section of each specie  

must  be  found. 

Thus, in o rde r  to determine 

The method of determining radiative c r o s s  sections of major  contributing 

species follows the work of Hoshizaki and co-workers  (References 3 and 8). 

The reader  is r e fe r r ed  to  these references for specific details  of models used 

to  determine these c r o s s  sections. 

contributing species in a i r  a r e  shown in Figures  3 through 6. 
present  continuum c r o s s  section variations with frequency due to  bound-free and 

Typical c ross -sec t ion  curves  for the s ix  

Figures  3 and 4 

14 
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Figure 6 - Radiative Cross  Section of N2 and 0 2  Molecules as  a Function 
of Frequency 
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f ree- f ree  transit ions for 0 atoms and N atoms,  respectively. 

sents  typical continuum c ross  sections fo r  N' and O', where the  c r o s s  

section of O+ is assumed equal to that of Nt. 
mation because the ions contribute l i t t le to  the total  absorption coefficient 

except a t  high frequencies where the radiation f r o m  the shock layer  is nea r  

that  of a black body (Reference 3). 

coefficients of air a r e  the O2 Schumann-Runge continuum and the N2 Birge- 

Hopfield band (Reference 3) .  

are shown in Figure 6. 
of a i r ,  the total  absorption coefficient and thus the radiative f l u x  emission 

t e r m  can be  evaluated. 

F igure  5 p r e -  

This i s  an  acceptable approxi- 

The only significant molecular absorption 

Typical c r o s s  sections for the two molecules 

Upon obtaining the significant radiative c r o s s  sections 

c 

19 
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I 

Section 4 

RESULTS AND DISCUSSION 

4.1 EMISSION AND SPECTRAL ABSORPTION MODEL RESULTS 

Solutions of the shock layer  equations using the techniques descr ibed 

in the previous sections provide insight into the coupled radiative and con- 

vective heat t ransfer  mechanisms through r ea l  gases. 

and the spec t ra l  absorption models presented in this  analysis yield different 

resu l t s  whether coupled o r  uncoupled to  the convective heat t ransfer  mechanism. 

The radiative emission 

Results obtained by using the spectral  model, which is based on r e -  

a l i s t ic  absorption coefficients, and the emission model a r e  shown in Figures  

7 and 8 fo r  the same flight conditions. Figure 7 presents  two se t s  of curves  

- one for shock layer p r e s s u r e  profiles and one for tempera ture  profiles. 

The shock layer  p re s su re  profile is seen to  be  a monotonic increasing func- 

tion for both a coupled and an uncoupled solution. 

the spec t ra l  absorption model yield the same p r e s s u r e  profile, t o  four s ig-  

nificant f igures , in a radiative coupled solution. 

a l a rge r  change in the shock layer  tempera ture  profile than in the p r e s s u r e  

profile. Coupling increases  the thermal  thickness and dec reases  the shock 

layer  thickness (Figure 7). 

nea r  rl = 0.1 i s  due t o  the dissociation of N2. Further ,  the coupled solutions 

for both radiation models yield about the same shock layer  tempera ture  profile. 

The emission model and 

Radiative coupling produces 

The inflection point in the tempera ture  profile 

Figure 8 presents radiative emission prof i les  for both coupled and 

uncoupled solutions using the two radiation models. 

produces a ve ry  significant change in emission profiles for both models. 

Fur ther ,  both radiation models produce distinctively different shock layer  

emission prof i les  whether they a r e  uncoupled or  coupled solutions. 

main distinction i s  that the detailed spectral  model includes the effects of 

Radiation coupling 

The 
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absorption and this  yields negative emission values near  the wall. 

radiation models yield emission profiles which a r e  ve ry  sensit ive to  t e m -  

pera ture  and to  a l e s s e r  .extent to p re s su re .  

t ive emission, an  accura te  temperature distribution must  be  obtained and 

it,  of course,  is a function of the radiative emission such that the problem 

is coupled. 

Both 

Thus, to obtain real is t ic  radia-  

The detailed spec t ra l  radiation model provides m o r e  insight than 

the emission model into the mechanisms of coupled radiative and con- 

vective heat t ransfer .  The detailed spec t ra l  radiation model i s  based 

on obtaining rea l i s t ic  absorption c r o s s  sections,  a s  described in Section 

3.2,  and thus i s  based on computing rea l i s t ic  absorption coefficients 

f r o m  Equation (1  8). Absorption coefficients a s  a function of frequency 

for typical wall and shock conditions a r e  presented in Figures  9 and 10, 

respectively. 

The monochromatic optical depth, which is based on the absorption 

coefficients [Equation (i ’)], f o r  several  frequencies is shown in Figure 11. 

These resu l t s  show that the shock layer  gas is highly absorbing in the 

vacuum ultraviolet (h Y 2 13) and nearly t ransparent  in the visible ( h v  

and infrared (hv  

8. The monochromatic energy flux, d&/dhv ,  at the wall corresponding 

to  the optical depths shown in Figure 11, i s  presented in Figure 12. 

interesting to  note that radiative coupling changes the charac te r  of the p r o -  

file, a s  well a s  decreases  the magnitude of the monochromatic energy flux. 

10) 
1.0) p a r t  of the spec t rum a s  indicated by References 3 and 

It i s  

To determine the usefulness of the radiative models,  the range of 

applicability, and for  comparison with existing correlat ion equations, Figure 

13 was prepared. 

of f r e e s t r e a m  velocity for  th ree  f r ees t r eam densit ies which a r e  of different 

o r d e r s  of magnitude. Three methods were  used to  calculate heating r a t e s  

for comparison. The th ree  methods were  ( 1 )  a coupled solution using the 

emission model, (2 )  a coupled solution using the detailed spec t ra l  model, 

This figure presents  the total  heating r a t e  as  a function 

2 3  
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t 

L 

and (3) an  uncoupled solution obtained by simply adding the convective heat-  
ing r a t e  predicted by the correlat ion equation of Kemp and Riddell (Reference 

13) and the radiative heating ra te  predicted by the correlat ion equation of 

Thomas (Reference 13). The resul ts  presented in Figure 13 indicate there  

a r e  t h r e e  density-velocity regimes in  which heating r a t e s  should be calcu- 

lated by different methods. 

Detailed calculations of the present  study and the correlat ion equation of 

Kemp and Riddell a re  in good agreement - note the re  is no radiation con- 

tribution. Obviously, f o r  the sake of simplicity, the correlat ion equation 

should b e  used in this regime. 

but is l imited to  lower f r ees t r eam densities. 

lations of this  study using both radiation models a g r e e  with resu l t s  obtained 

by adding heating r a t e s  f r o m  the correlation equation of Kemp and Riddell 

and the correlat ion equation of Thomas. Again, the correlat ion equations 

should b e  used in this regime where little radiative coupling occurs.  

the third regime, the radiative and convective heat t r ans fe r  mechanisms 

a r e  strongly coupled. A detailed calculation of heating r a t e s  based on a 

rea l i s t ic  radiation model is essential  to obtain valid heating rates.  

13 shows that both the correlation equations and the calculations based on 

the emission model yield heating rates much higher than those predicted by 

the detailed flowfield solution, including real is t ic  effects of self absorption. 

The f i r s t  regime consis ts  of the lower velocities. 

The second regime includes higher velocities 

In this  regime,  detailed calcu- 

In 

Figure 

An additional interesting feature is shown in Figure 13. The heating 

ra te  curve  fo r  the coupled spec t ra l  analysis a t  a f r e e s t r e a m  density of 

P, = 3 . 3 2 ~  This unusual behavior can 

be  explained by first observing the shock layer  tempera ture  distribution 

(F igure  14) for  U, = 34,000 ft/sec. The energy in the shock layer  is d is -  

tr ibuted due to  radiative and convective coupling, such that approximately 

8070 of the shock layer  is near  the ionization tempera ture  of nitrogen. 

This is shown by the specie concentration profiles presented in Figure 14. 

Fur ther ,  the contribution of N atoms to  the absorption c r o s s  section i s  

significantly grea te r  than NS ions. 

shock layer  p r e s s u r e  i s  approximately 17 a tmospheres .  

significantly increases  the absorption coefficient such that the optical depths 

slug/ft3 shows a maximum, 

(See Figures  4 and 5.) Also, the 

This combination 
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are  increased  by a n  o r d e r  of magnitude over  those,  for example, shown in  

Figure 11. 

body at a tempera ture  of approximately 8800°K and thus dec reases  the rad ia-  

t ive heating flux to  the surface ve ry  significantly. 

paradoxical  conclusion that an  increase in  velocity at a constant alt i tude 

reduces the stagnation point heating rate in ce r t a in  flight regimes.  

before  making any such sweeping conclusions, it mus t  b e  recognized that 
this flight condition (34,000 ft /sec at an alt i tude of approximately 100,000 

f t )  is unreal is t ic  and hence the present  method perhaps  neglects cer ta in  

effects which play a dominant ro le  for this unusual flight condition. 

such effect is p e r c u r s o r  radiation, a field in  which only a small amount of 

detailed work has been done. 

The net  resu l t  is that the shock l aye r  gas radiates  l ike a black 

Thus, one a r r i v e s  at the 

However, 

One 

In re ference  to  the usefulness  and applicability of the spec t ra l  and 

emission models,  two additional points should be made. 

radius of a vehicle increases  beyond one foot, the velocity-density re-  

gime in which correlat ion equations can be  used is significantly reduced. 

This is shown in Figure 15 and will be fur ther  demonstrated in Section 4.2. 

As a resu l t ,  a coupled solution using a detailed spec t ra l  model is needed 

over a l a r g e r  velocity-density regime for l a rge  body radi i  than for small 

body radii. 

determining t rends  and not f o r  quantitative work. 

can be of prac t ica l  value, because it permits coupled solutions to  be ob- 

tained rapidly. 

mately eight seconds execution t ime  on a Univac 1108, whereas  a coupled 

solution using the spec t ra l  model requires  approximately 50 seconds. In 

some flight reg imes  the initial guess for the enthalpy is rather c r i t i ca l  when 

using the spec t ra l  model. 

using the  spec t ra l  model, a coupled solution using the  emission model for  

a similar problem can be used. 

l e m s  back  to  back fo r  input into the computer p r o g r a m  (Reference 4) developed 

using the  present  analysis.  

p roblems and reduces the execution t ime by approximately 18 seconds for  

solutions using the spec t r a l  model. 

First, a s  the body 

Secondly, the emission model appea r s  t o  be useful only in 

The emission model 

A coupled solution using the emission model required approxi-  

To obtain a good guess  for  a coupled solution 

This is accomplished by stacking the  prob-  

This technique eliminates many init ial  guessing 
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4.2 HEATING MINIMIZATION 

Classically, a n  optimum body radius could be found that would minimize 

the total  stagnation point heating rate at a par t icular  t ra jec tory  point. 

behavior is  predicted by the addition of heating r a t e s  f r o m  convective and 

radiative heating correlation equations. Based on this  concept, the optimum 

body radius that would yield the lowest total  heating over a selected t ra jec tory  

could be found by an  iteration procedure. Fur ther ,  a t ra jec tory  and a body 

radius  could be  selected to reduce total heating to  a minimum by a calculus 

of variations procedure. 

due t o  radiation coupling has  been presented by Dirling, Rigdon and Thomas 

(Reference 14). 

of radiation coupling changed the character  of the heating ra te  versus  body 

radius  curve to  the extent that no realist ic minimum in heating ra te  occurs. 

The present  study substantiates this conclusion. 

This 

. 

A significant deviation f rom this c lass ica l  concept 

Their contention is that  for many flight conditions the effects 

Convective, radiative and total heating r a t e s  a s  a function of body radius 

a r e  shown in Figure 16. 
puted using the detailed spectral  and the emission model of this  study a r e  

presented in Figure 16. Both methods yield resu l t s  indicating that the 

total heating curve does not have a minimum. The spec t ra l  model yields 

coupled radiative heating ra tes  which a r e  substantially lower than those p r e -  

dicted using the emission model. 

variation with body radius. 

principally to  convective and radiation coupling r a the r  than to the type of 

radiation model used. 

A comparison between coupled heating r a t e s  com-  

Again, both models have the same type of 

This indicates that  the lack of a minimum is due 

Figure 16 a l so  presents  a comparison between heating ra tes  predicted 

by the present  analysis  using the detailed spec t ra l  model and heating r a t e s  

predicted by correlat ion equations of Kemp and Riddell and Thomas for 

var ious nose radii. The correlation equations predict  the character is t ic  

minimum in total  heating due to  the I/& dependence for convective and 

the R dependence for  radiative heating. Solutions of the present  study 

3 3  
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c 

show that neither the 1/& dependence for  convective nor the R dependence 

for  radiative heating holds for a coupled solution when a reasonable rad ia-  

tion model is used. 

is ser iously overpredicted by adding equations for  convective and radiative 

heating. 

t ions for convective and radiative heating ra tes  i s  that the convective and 

radiative heat t ransfer  mechanisms a r e  uncoupled. 

i nc reases  with body radius. 

but exists a t  smal l  radii ,  erroneous heating ra tes  can be obtained f r o m  

correlat ion equations a t  l a rge  radii becaLse of the increased coupling. 

In addition, a t  higher radi i  the value of the total  heating 

The basic assumption in simply adding heating r a t e s  f r o m  equa- 

The extent of coupling 

Therefore, in the event that  coupling is small 

4.3 MASS INJECTION EFFECTS 

The injection of gaseous species into the shock layer  changes the 

charac te r  of the layer  and can significantly reduce the surface heating rate. 

To study m a s s  injection effects with radiation coupling, a flight condition 

of U, = 34,286 ft/sec and Poo = 1.5132 x slug/ft was selected. The 

effects of injecting various percentages of a i r  a t  this  flight condition where 

significant radiation coupling occurs a r e  presented in Figures 17, 18 and 19 

for a body radius of R = 3.066 ft. 

considered in this analysis ,  although this a r e a  i s  being explored for  future 

analytical  developments. 

3 

Injection of ablation products were  not 

Since the intention of this portion of the analysis  was to provide quali- 

tat ive resu l t s  for  future quantitative studies,  only the emission radiation 

model was used. Coupled heating ra te  solutions for  m a s s  injection r a t e s ,  

(PV),, up to  1070 of the f rees t ream mass flow ra te ,  (PU),, a r e  shown in 

Figure 17. 

ing rate can be substantially decreased by mass injection. 

analyzed, convective heating contributes very  l i t t le to  the total stagnation 

point heating for m a s s  injection r a t e s  of approximately 570. 

is clar i f ied by Figure 18. 

the wall i s  very  near  ze ro  for large m a s s  injection rates .  

The resu l t s  presented in Figure 17 indicate that the total  heat-  

For  the conditions 

This behavior 

The slope of the shock layer  enthalpy profile a t  

Figure 18 a l s o  

3 5  
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shows that the shock layer  velocity profile is affected by m a s s  injection but 

not as  significantly a s  the enthalpy profile. 

The effects of convective and radiative coupling at a m a s s  injection 

r a t e  of 570 of the f r ees t r eam value a r e  shown in Figure 19. The shock layer  

velocity profile is only slightly reduced, while the enthalpy profile i s  appre -  

ciably reduced due to  radiation cooling. It is interesting to  note that the 

enthalpy profile nea r  the wall and thus the convective heating is only slightly 

affected by convective and radiative coupling. Therefore,  only the radiative 

heating, which dominates, is significantly affected by coupling for this  high 

m a s s  injection case.  Furthermore,  even for small m a s s  injection r a t e s ,  i t  

can be concluded that a coupled solution i s  necessary  for  making real is t ic  

heating ra te  predictions when energy i s  t ransfer red  radiatively within a shock 

layer.  

4.4 EARTH ENTRY AT LUNAR RETURN VELOCITIES 

Reentry aerothermodynamics for reent ry  velocit ies above orbital  

velocit ies i s  complicated by strong coupling between radiative and con- 

vective heat t ransfer  mechanisms. 

into account and real is t ic  radiative propert ies  must  be  used to  determine 

adequately the heating environment on the blunted face of a reentry vehicle. 

Coupling effects must  be properly taken 

There a r e  four principal a r e a s  in which the severi ty  of the surface 

environment may be  overpredicted and thus lead to  unwanted o r  unexpected 

conserva t i sm in a heat shield design. 

which properly accounts for self absorption must  be used in order  to p r e -  

dict  rea l i s t ic  radiative heating rates.  Secondly, and possibly m o r e  signifi- 

cantly, the radiative and convective heat t ransfer  r a t e s  must  be calculated 

using a coupled conservation equation solution. The effects of coupling on 

heating r a t e s  presented in previous sections demonstrates  that  highly con- 

servat ive heating r a t e s  a r e  obtained when this phenomenon is neglected. 

Neglecting the effects of mass injection on the heating r a t e  is a third a r e a  

in which conservat ism can be  introduced into a heat shield design. 

First, a rea l i s t ic  radiation model 

A s  seen 

39 



LMSC/HREC A79 1241 

, in Section 4.3 f o r  injection of a i r  species ,  a sma l l  amount of mass injection 

can significantly reduce the stagnation point heating ra te ,  as  well as  change 

the charac te r  of the shock layer. 

be  introduced is concerned with the degradation of ablation materials.  

the present  analysis,  both coupling and m a s s  injection are  shown to  dec rease  

the velocity gradient a t  the wall (F igures  18 and 19). This,  of course,  

decreases  the shear  s t r e s s  at the wall and thus the degradation r a t e  of a n  

ablative surface. Also, a s  noted in previous sections, the extent of coupling 

increases  with increasing body radius. Therefore,  c a r e  must  b e  exercised 

in using a shear s t r e s s  analysis  based on heating r a t e  distributions f r o m  

tunnel tes t  on small  nose radi i  model for design of a full-sized flight vehicle. 

A fourth a r e a  in which conservat ism can 

In 

Figure 20 was prepared  to i l lustrate  the significance of the first two 

a r e a s  in which conservat ism can be introduced into heat  shield designs. 

This figure presents  the stagnation point heating rate his tory for  a 3.066 
f t  nose radius body using three  theoretical  methods. The heating rate curves  

a r e  for the Project  F i r e  I1 t ra jectory (Reference 14),  which was used to  simu- 

la te  lunar reentry heating ra tes  on the face of t h ree  beryl l ium ca lor imeters  

which were sequentially exposed. The three  methods used were :  (1) an un- 

coupled solution obtained by adding heating r a t e s  f rom correlat ion equations 

of Kemp and Riddell (Reference 13)  and Thomas (Reference 13), (2)  a coupled 

solution obtained using the analysis presented in previous sections for  the 

emission model, and (3 )  a coupled solution obtained using the analysis  p r e -  

sented in previous sections for the detailed spec t ra l  model. 

that the heating ra te  i s  substantially reduced by coupling and self absorption 

in the portion of the t ra jec tory  where radiative t ranspor t  of energy is signifi- 

cant. Further ,  the t ime at which peak heating occurs  is  changed by coupling. 

This figure shows 

In the light of the resu l t s  presented here ,  it can be concluded that a 

detailed flowfield analysis  i s  necessary  for  design of superorbi ta l  entry 

vehicle heat shields. 

se rva t i sm may be introduced into heat shield designs can be  adequately de-  

fined using a detailed analysis. 

time. 

All four major  points where inadequately defined con- 

This is not beyond the s ta te  of the a r t  at this  
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